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ABSTRACT 

This paper proposes solutions for pricing options on stocks which pay discrete 

dividends in markets with daily price limits. We first extend the intraday density 

function of Guo and Chang (2020) to a multi-day one and use the framework of Haug 

et al. (2003) to value European options on stocks paying discrete dividends. Next, we 

adopt the fast Fourier transform (FFT) to derive accurate and efficient formulae for 

American options and, further, employ the three-point Richardson extrapolation to 

accelerate the computation. Finally, the accuracy of our proposed methods is verified 

by simulations. 
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I. Introduction 

This paper considers the problem of pricing options on stocks which pay discrete 

dividends in markets with daily price limits. Stocks frequently pay dividends, and 

many studies attempt to introduce more realistic assumptions about dividends after 

Black and Scholes (1973) derived option pricing formulae for non-dividend-paying 

stocks.
1
 Brav et al. (2005) point out that firms provide dividends in discrete rather 

than continuous flow and CEOs are reluctant to change the size of dividends in order 

to maintain the investors’ confidence. Although the discrete-payment setting could be 

more realistic than the continuous one, it gives rise to significant mathematical 

difficulty in pricing options due to jumps caused by discrete payments, even if they 

are constant (Dai and Chiu, 2014). In addition, Kim and Park (2010) point out that 23 

out of 43 of the most important world markets use daily price limits. As per Guo and 

Chang’s (2020) assertion, knowledge of pricing options in markets with daily price 

limits is quite limited, and our understanding of price limit mechanisms primarily 

comes from empirical studies. This illustrates the importance and contribution of this 

paper: it derives solutions for these types of pricing situations. 

Black (1975) was the first to investigate the pricing problem of options on stocks 

paying a fixed dividend discretely. To incorporate discrete constant dividends into 

                                                 
1
 For example, Merton (1973) extends the Black-Scholes formulae by assuming 

continuous and constant dividend yields. Under similar assumptions of dividend 

yields, Kim (1990), Carr et al. (1992), and Jamshidian (1992) also provide pricing 

formulae for American options in an implicit form. 
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European option pricing, he suggests using the stock price minus the present value of 

dividends instead of the stock price itself. If firms escrow the dividend’s value and run 

the business with the rest, the proposed method of Black (1975) will provide the exact 

value of European options. This approach often undervalues call options, and the 

mispricing becomes larger as the dividend is paid later in the option’s lifetime.
2
 Haug 

et al. (2003) indicate that the approximation suggested by Black (1975) for American 

options suffers from the same problem, as does the Roll-Geske-Whaley (RGW) model 

(Roll, 1977; Geske, 1979, 1981; Whaley, 1981). The RGW model applies a compound 

option approach to American options with similar approximations of stock price 

processes. Let 𝑆 denote the stock price, 𝐷 denote the size of the cash dividend to be 

paid at time 𝑡𝐷, σ denote the volatility, and 𝑟 denote the risk-free interest rate. 

Many studies often solve this problem based on adjustments of volatility in 

combination with the escrowed dividend adjustment.
3
 The method with �̂� = 𝑆 −

                                                 
2
 The price volatility before the ex-dividend could be too small with Black’s approach 

because of the lower stock prices while the ex-dividend price process is fitted into a 

geometric Brownian motion (GBM) as the BSM formula. 
3
 We shortly discuss some such approaches, all of which assume that the stock price 

can be described by a GBM: (1) An adjustment popular among practitioners is to 

replace the volatility σ with �̂� = (𝜎𝑆) (𝑆 − 𝐷𝑒−𝑟𝑡𝐷)⁄  (Chriss, 1997). Haug et al. 

(2003) show that this approach increases the volatility relative to the basic escrowed 

dividend process but the adjustment yields too high volatility if the dividend is paid 

out early in the option’s lifetime. (2) A more sophisticated volatility adjustment 

replaces σ with 𝜎2 = (𝜎𝑆) (𝑆 − 𝐷𝑒−𝑟𝑡𝐷)⁄  as before, but not for the entire lifetime 

of the option (Haug and Haug, 1998; Beneder and Vorst, 2001). The idea behind the 

approximation is to leave volatility unchanged in the time before the dividend 

payment and to apply the volatility 𝜎2 after the dividend payment. Because the BSM 

model requires one volatility as input, some sort of weight must be assigned to each of 

σ  and 𝜎2 . The single input volatility is then computed as 
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𝐷𝑒−𝑟𝑡𝐷  , 𝜎2 = (𝜎𝑆) (𝑆 − 𝐷𝑒
−𝑟𝑡𝐷)⁄ , and �̂� = √(𝜎2𝑡𝐷 + 𝜎2

2(𝑇 − 𝑡𝐷)) 𝑇⁄  may be 

referred to the spot volatility adjusted approximation. Buryak and Guo (2012) 

introduce a different approximation based on the set-up of Bender and Vorst (2001). 

They modify the strike price from 𝐾  to �̂�  by setting �̂� = 𝐾 + 𝐷𝑒𝑟(𝑇−𝑡𝐷)  and 

adjust the volatility σ  to �̂� = √(𝜎2𝑡𝐷 + 𝜎2
2(𝑇 − 𝑡𝐷)) 𝑇⁄  where 

𝜎2 = 𝜎 𝑆 (𝑆 + 𝐷𝑒−𝑟𝑡𝐷)⁄ . The method of Buryak and Guo (2012) may be referred to as 

the strike volatility adjusted approximation. Buryak and Guo (2012) take the hybrid 

approximation (�̂� = 𝑆 − 𝐷𝑆 and �̂� = 𝐾 + 𝐷𝐾 where 𝐷𝑆 = 𝐷𝑒
−𝑟𝑡𝐷 (𝑇 − 𝑡𝐷) 𝑇⁄  and 

𝐷𝐾 = 𝐷𝑒−𝑟𝑡𝐷 𝑡𝐷 𝑇⁄ ) above as a starting point but then adjust the volatilities in a 

manner related to the volatility adjustment schemes mentioned earlier with 𝜎𝑆 =

𝜎 𝑆 (𝑆 − 𝐷𝑆)⁄ , 𝜎𝐾 = 𝜎 𝑆 (𝑆 + 𝐷𝐾)⁄ , 𝜎𝑆 = √(𝜎𝑆
2𝑡𝐷 + 𝜎2(𝑇 − 𝑡𝐷)) 𝑇⁄ ,  𝜎𝐷 = 

√(𝜎2𝑡𝐷 + 𝜎𝐾
2(𝑇 − 𝑡𝐷)) 𝑇⁄ , and �̂� = √𝜎𝑆𝜎𝐷. This method may be referred to the 

hybrid volatility approximation. Haug et al. (2003) claim that, even if this approach 

                                                                                                                                            

�̂� = √(𝜎2𝑡𝐷 + 𝜎2
2(𝑇 − 𝑡𝐷)) 𝑇⁄  where 𝑇 is the time of expiration for the option. 

This is still simply an adjustment to parameters of the GBM price process that ensures 

the adjusted price process remains a GBM at odds with the true ex-dividend price 

process. Haug et al. (2003) show that this method performs particularly poorly in the 

presence of multiple dividends. (3) Bos et al. (2003) suggest a more sophisticated 

volatility adjustment to overcome the problems with the escrowed dividend price 

process. Numerical results of Haug et al. (2003) show that this approach performs 

poorly for very high dividends and seemingly also performs poorly for long-term 

options with multiple dividends. (4) A slightly different way to implement the 

escrowed dividend process is to adjust the stock price and strike (Bos and Vandermark, 

2002). In contrast with the spot volatility approximation and the strike volatility 

approximation, this method does not adjust the volatility and may be referred to the 

hybrid approximation.  
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seems to work better than the approximations mentioned above, it still suffers from 

approximation errors for large dividends.
4
 

    Haug et al. (2003) point out several problems and weaknesses of the current 

approaches mentioned above: (a) logical flaws. The logical flaw of an escrowed 

dividend process is that the resulting stock price process changes with the option 

expiration. Whatever the stock price process is, it cannot depend upon which option 

you happen to be considering. (b) Ill-defined stock price processes. Wilmott et al. 

(1993) suggests letting the company go bankrupt if the dividend is larger than the 

asset price as this approach avoids negative stock prices. (c) Arbitrage issues: this is 

illustrated by an example in Haug et al. (2003) which notes that the arbitrage occurs 

because the RGW model is mis-specified in that the dynamics of the stock price 

process depends on the timing of the dividend. Similar examples have been discussed 

by Bender and Vorst (2001) and Frishling (2002). 

    In addition to the arguments of Haug et al. (2003), we believe that the discussion 

of the impacts of discrete dividends on options could not be limited in the case of the 

geometric Brownian motion. We extend the method of Haug et al. (2003) by studying 

                                                 
4

 An alternative to the escrowed dividend approximation is to use the 

non-recombining lattice method (Hull, 2000). If implemented as a binomial tree, one 

builds a new tree from a node on each dividend payment date. A problem with all 

non-recombining lattices is that they are time consuming to evaluate. Schroder (1988) 

describes how to implement discrete dividends in a recombining tree. However, this 

approach is based on the escrowed dividend process, and could significantly misprice 

options. Wilmott et al. (1993) indicates what seems to be a sounder approach to 

ensure a recombining tree for the spot price process with a discrete dividend. 
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daily price limits. Such an extension is important because most stock markets around 

the world use price limits. Price limits are believed to mitigate excessive price 

volatility, lower panic behavior, and/or minimize price manipulation.
5
 Despite their 

significant presence, however, impacts of these price limit mechanisms on options are 

not well understood, and there remain many unanswered questions about how to make 

early-exercise decisions regarding market regulation because of the lack of 

appropriate study tools. In this paper, we extend the intraday density function of Guo 

and Chang (2020) to a multi-day density function. Then, we use the framework of 

Haug et al. (2003) to value European options on stocks with discrete dividends in 

daily price limit markets. As for American options, we derive an efficient formula for 

the early exercise premium and employ the three-point Richardson extrapolation to 

accelerate the computation. In addition, we also explore the influence of dividends, 

price limits, and interest rates on the decision of early exercise. 

The rest of this paper is organized as follows: in Section 2, the model and 

methodology are briefly described. Section 3 provides a comparison of our proposed 

solution with simulations and illustrates our findings. Section 4 presents the 

conclusion. 

 

                                                 
5
 See Kim and Rhee (1997), Kim (2001), Kim and Yang (2004), and Kim and Park 

(2010). 
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II. Model and Methodology 

2.1 Framework of Haug et al. (2003) 

We first consider the framework of Haug et al. (2003) to value a European or 

American option on a stock that pays a discrete dividend at time 𝑡 = 𝑡𝐷. In this 

framework, let 𝑀𝑡 = 𝑀(𝑡) denote the so-called cum dividend process, which is 

when any dividends are reinvested immediately back into the security. In general, 𝑀𝑡 

is not the market price of the stock, but instead is the market price of a hypothetical 

mutual fund that only invests in that stock. Let 𝑆𝑡 denote the market price of the 

stock at time 𝑡. Sometimes, we will call 𝑆𝑡 the ex-dividend process. If there are no 

dividends, then 𝑆𝑡 = 𝑀𝑡 for all 𝑡. Even if the company pays a dividend, we can 

always arrange things so that 𝑆0 = 𝑀0, which guarantees (by the law of one price) 

that 𝑆𝑡 = 𝑀𝑡 for all 𝑡 < 𝑡𝐷.  

Now we consider an unprotected Euro-style option for stocks issued by a 

company that declares a single discrete dividend of size 𝐷 and the ex-dividend date 

𝑡𝐷 during the option holding period. If the company pays a dividend 𝐷, the stock 

price at the ex-dividend date must drop by the same amount: 𝑆(𝑡𝐷) = 𝑆(𝑡𝐷
−) − 𝐷 =

𝑀(𝑡𝐷
−) − 𝐷. The notation of 𝑡𝐷

− is the time instantaneously before the ex-dividend 

date 𝑡𝐷. Because the stock price represents the price of a limited liability security, we 

must have 𝑆(𝑡𝐷) ≥ 0; so, there is a fundamental contradiction between these last two 
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concepts if 𝑀(𝑡𝐷
−) < 𝐷. We resolve it by the following minimal modification to the 

dividend policy. We assume that the company will indeed pay out its declared amount 

if 𝑀(𝑡𝐷
−) > 𝐷, abbreviating 𝑀− = 𝑀(𝑡𝐷

−). However, in the case where 𝑀− < 𝐷, we 

assume that the company pays some lesser amount ∆(𝑀−) whereby 0 ≤ ∆(𝑀−) ≤

𝑀−. There are two natural dividend policy choices, namely ∆(𝑀−) = 𝑀− (liquidator) 

and ∆(𝑀−) = 0 (survivor). The first case allows liquidation because the ex-dividend 

stock price would be absorbed at zero. The second case allows survival because the 

stock price process can then attain strictly positive values after the dividend payment. 

Thus, the actual dividend paid becomes the random variable 𝒟(𝑀), where 

𝒟(𝑀) = {
𝐷,           if 𝑀 > 𝐷

Δ(𝑀) ≤ 𝑀,   if 𝑀 ≤ 𝐷
.                      (1) 

In (1), 𝐷 is the declared dividend—a constant, independent of 𝑀. The functional 

form for 𝒟(𝑀) is any function that preserves limited liability. Then, the market price 

of the security evolves, using GBM as the prototype of the cum-dividend process 

(𝑑𝑀𝑡 = 𝑟𝑀𝑡𝑑𝑡 + 𝜎𝑀𝑡𝑑𝐵𝑡), as follows: 

           𝑑𝑆𝑡 = [𝑟𝑆𝑡 − 𝛿(𝑡 − 𝑡𝐷)𝒟(𝑆𝑡𝐷−)]𝑑𝑡 + 𝜎𝑆𝑡𝑑𝐵𝑡               (2) 

where 𝛿(𝑡 − 𝑡𝐷) is Dirac’s delta function centered at 𝑡𝐷, 𝜎 is a constant volatility, 

and 𝐵  is a standard Brownian motion. Note that 𝑆𝑡 = 𝑀𝑡  for all 𝑡 < 𝑡𝐷  and 

𝑆𝑡𝐷 = 𝑀𝑡𝐷 − 𝒟(𝑀𝑡𝐷). For 𝑡 > 𝑡𝐷 (post ex-dividend date), little can be said about 𝑆𝑡 
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given only knowledge of 𝑀𝑡  (all we can say is that 𝑆𝑡 < 𝑀𝑡  if 𝐷 > 0).
6
 Let 

𝜙(𝑀0, 𝑀𝑡, 𝑡) denote the cum-dividend transition density, which is the probability 

density for an initial state 𝑀0 to evolve to the final state 𝑀𝑡 over a given time 𝑡. 

For GBM, 𝜙(𝑀0, 𝑀𝑡 , 𝑡) is the familiar log-normal density. 

    We write 𝑉𝐸(𝑀𝑡, 𝑡; 𝐷, 𝑡𝐷) for the time-𝑡 fair value of a European-style option 

that expires at time 𝑇 in the presence of a discrete dividend 𝐷 paid at time 𝑡𝐷. The 

last two arguments are the main parameters in the fully specified dividend policy 

{𝑡𝐷, 𝒟(𝑀)} where 𝑡 < 𝑡𝐷 < 𝑇 . If there is no dividend between time 𝑡  and the 

option expiration 𝑇, we simply drop the last two arguments and write 𝑉𝐸(𝑀𝑡, 𝑡), 

which is a well-known formula in the absence of dividends. For simplicity, the strike 

price 𝐾, option expiration 𝑇, and other parameters and state variables have been 

suppressed. We can therefore obtain the option price by discounting the expected 

value at 𝑡𝐷, as follows: 

Remark. Integral form of a European-style option price (Haug et al., 2003) 

𝑉𝐸(𝑀0, 0; 𝐷, 𝑡𝐷) = 𝑒−𝑟𝑡𝐷 ∫ 𝑉𝐸(𝑀 − 𝒟(𝑀), 𝑡𝐷)
∞

0
𝜙(𝑀0, 𝑀, 𝑡𝐷)𝑑𝑀.          (3) 

                                                 
6
 One may assume that, after the ex-dividend date, the stock price (𝑆𝑡, for 𝑡 > 𝑡𝐷) 

still can be approximated by another GBM process. This assumption constitutes the 

so-called piecewise geometric Brownian motion process. For instance, Dai and Chiu 

(2014) assume that the stock price process prior to time 𝑡𝐷 and after time 𝑡𝐷 can be 

separately modelled by two different lognormal-diffusive stock price processes. 
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Note that the adoption by the company of a single discrete dividend policy 

{𝑡𝐷, 𝒟(𝑀)}  causes the fair value of a European-style option to change from 

𝑉𝐸(𝑀0, 0) to 𝑉𝐸(𝑀0, 0; 𝐷, 𝑡𝐷). For the results of (3) to be useful, we need to be able 

to solve our model in the absence of dividends.  

    In the case of American call options, an optimal early exercise is limited to the 

ex-dividend date. Therefore, Haug et al. (2003) also provide pricing for American call 

options in an integral form, as follows: 

Remark. Integral form of an American call option price (Haug et al., 2003) 

𝐶𝐴(𝑀0, 0; 𝐷, 𝑡𝐷) = 𝑒−𝑟𝑡𝐷 ∫ 𝑚𝑎𝑥{(𝑀 − 𝐾)+, 𝐶𝐸(𝑀 − 𝒟(𝑀), 𝑡𝐷)}
∞

0
𝜙(𝑀0, 𝑀, 𝑡𝐷)𝑑𝑀. 

 (4) 

Early exercise is never optimal unless there is a finite solution of 𝑀∗, satisfying 

𝑀∗ − 𝐾 = 𝐶𝐸(𝑀
∗ − 𝐷, 𝑡𝐷)                        (5) 

where we assume that 𝐾 > 𝐷 (a virtual certainty in practice). We can break up the 

integral into pieces, as follows: 

𝐶𝐴(𝑀0, 0; 𝐷, 𝑡𝐷) = 

𝑒−𝑟𝑡𝐷 ∫ 𝐶𝐸(𝑀 − 𝒟(𝑀), 𝑡𝐷)
𝑀∗

0
𝜙(𝑀0, 𝑀, 𝑡𝐷)𝑑𝑀 + 𝑒−𝑟𝑡𝐷 ∫ (𝑀 − 𝐾)

∞

𝑀∗ 𝜙(𝑀0, 𝑀, 𝑡𝐷)𝑑𝑀 .  

(6) 
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With the sequence of dividends {(𝐷𝑖, 𝑡𝑖)}𝑖=1
𝑛 , 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑛 , the argument 

leading to Eq. (3) still holds. This should be repeated iteratively, starting at time 𝑡𝑛−1 

by applying (3) to the last dividend (𝐷𝑛, 𝑡𝑛). This procedure could involve evaluating 

a very time-consuming 𝑛-fold integral. Therefore, we need an efficient and accurate 

way to implement it. 

For American put options, it can be optimal to exercise at any time prior to 

expiration, even in the absence of dividends. So, in this case, we are generally forced 

to a numerical solution; this is a well-known backward iteration. What may differ 

from what we are used to is that we must allow for an instantaneous drop of 𝒟(𝑀) 

on the ex-date. The Richardson extrapolation technique is one possible solution to 

obtain an efficient scheme for American options on a stock paying discrete dividends. 

For example, according to Kim (1990) and Chang et al. (2016): 

𝑃𝐴(𝑀(𝑡) − 𝒟(𝑀𝑡𝐷), 𝑡) 

= 𝑃𝐸(𝑀(𝑡) − 𝒟(𝑀𝑡𝐷), 𝑡)+𝑟𝐾 ∫ 𝑒−𝑟(𝑠−𝑡) {∫ 𝜙(𝑀𝑡, 𝑀, 𝑠 − 𝑡)𝑑𝑀
𝑀∗(𝑠)

0
}

𝑇

𝑡
𝑑𝑠 for 𝑡 ≥ 𝑡𝐷.

 (7) 

The critical exercise boundary solves the following integral equation for 𝑀∗(𝑡): 

𝐾 − (𝑀∗(𝑡) − 𝒟(𝑀𝑡𝐷)) 

= 𝑃𝐸(𝑀
∗(𝑡) − 𝒟(𝑀𝑡𝐷), 𝑡) + 𝑟𝐾∫ 𝑒−𝑟(𝑠−𝑡) {∫ 𝜙(𝑀∗(𝑡),𝑀, 𝑠 − 𝑡)𝑑𝑀

𝑀∗(𝑠)

0

}
𝑇

𝑡

𝑑𝑠 

for 𝑇 ≥ 𝑡 ≥ 𝑡𝐷.                            (8) 
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Once 𝑀∗(𝑡) is obtained, the price of the American put option can be calculated 

based on Eq. (7). Solving for 𝑀∗(𝑡) needs to be conducted recursively. We need to 

solve for 𝑀∗(𝑠) for 𝑠 ∈ (𝑡, 𝑇]. In order to be efficient so as to rapidly evaluate 

American options without approximating the whole early exercise boundary between 

𝑡𝐷  and 𝑇, we follow Huang et al. (1996) and Chang et al. (2016) to utilize a 

three-point Richardson extrapolation to accelerate the recursive integration method. 

The Richardson extrapolation scheme gains efficiency without sacrificing much 

accuracy. Our proposed model is implemented in a similar way. Assuming that the 

option can be respectively exercised only once, twice, or three times between 𝑡𝐷 and 

𝑇, and denoting the corresponding option prices as 𝑃1, 𝑃2, and 𝑃3, the three-point 

Richardson extrapolation for the American put option could be expressed as follows: 

�̂�𝐴 =
1

2
(𝑃1 − 8𝑃2 + 9𝑃3)                          (9) 

where �̂�𝐴 denotes the approximated American put option value. In addition, we have 

𝐸𝑡
𝑄{𝑃𝐴(𝑆𝑡𝐷 , 𝑡𝐷; 𝐷, 𝑡𝐷)} = ∫ 𝑃𝐴(𝑀 − 𝒟(𝑀), 𝑡𝐷)

∞

0
𝜙(𝑀𝑡, 𝑀, 𝑡𝐷 − 𝑡)𝑑𝑀.      (10) 

In the case of the liquidator dividend policy, Eq. (10) reduces to 

𝐸𝑡
𝑄{𝑃𝐴(𝑆𝑡𝐷 , 𝑡𝐷; 𝐷, 𝑡𝐷)} 

= 𝑃𝐴(0, 𝑡𝐷)∫ 𝜙(𝑀𝑡, 𝑀, 𝑡𝐷 − 𝑡)𝑑𝑀
𝐷

0

+∫ 𝑃𝐴(𝑀 − 𝐷, 𝑡𝐷)
∞

𝐷

𝜙(𝑀𝑡, 𝑀, 𝑡𝐷 − 𝑡)𝑑𝑀 

=𝐾 ∫ 𝜙(𝑀𝑡, 𝑀, 𝑡𝐷 − 𝑡)𝑑𝑀
𝐷

0
+ ∫ 𝑃𝐴(𝑀 − 𝐷, 𝑡𝐷)

∞

𝐷
𝜙(𝑀𝑡, 𝑀, 𝑡𝐷 − 𝑡)𝑑𝑀.      (11) 
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Let 𝑃𝐴
𝐸(𝑀(𝑡), 𝑡; 𝐷, 𝑡𝐷) ≡ 𝑒−𝑟(𝑡𝐷−𝑡)𝐸𝑡

𝑄{𝑃𝐴(𝑆𝑡𝐷 , 𝑡𝐷; 𝐷, 𝑡𝐷)}. Then, for 0 ≤ 𝑡 < 𝑡𝐷, we 

have 

𝑃𝐴(𝑀(𝑡), 𝑡; 𝐷, 𝑡𝐷) 

= 𝑃𝐴
𝐸(𝑀(𝑡), 𝑡; 𝐷, 𝑡𝐷)+𝑟𝐾 ∫ 𝑒−𝑟(𝑠−𝑡) {∫ 𝜙(𝑀𝑡, 𝑀, 𝑠 − 𝑡)𝑑𝑀

𝑀∗(𝑠)

0
}

𝑡𝐷

𝑡
𝑑𝑠.     (12) 

The critical exercise boundary solves the following integral equation for 𝑀∗(𝑡): 

𝐾 −𝑀∗(𝑡) 

= 𝑃𝐴
𝐸(𝑀∗(𝑡), 𝑡; 𝐷, 𝑡𝐷) + 𝑟𝐾∫ 𝑒−𝑟(𝑠−𝑡) {∫ 𝜙(𝑀∗(𝑡),𝑀, 𝑠 − 𝑡)𝑑𝑀

𝑀∗(𝑠)

0

}
𝑡𝐷

𝑡

𝑑𝑠 

for 0 ≤ 𝑡 < 𝑡𝐷.                            (13) 

Once 𝑀∗(𝑡) is obtained, the price of the American put option can be calculated 

based on Eq. (12). Again, solving for 𝑀∗(𝑡) needs to be conducted recursively. We 

need to solve for 𝑀∗(𝑠)  for 𝑠 ∈ (𝑡, 𝑡𝐷] . To be efficient and rapidly evaluate 

American options without approximating the entire early exercise boundary between 

𝑡 and 𝑡𝐷, we can utilize a three-point Richardson extrapolation to accelerate the 

recursive integration method. Assuming that the option can be exercised only once, 

twice, or three times between 𝑡 and 𝑡𝐷, and denoting the corresponding option prices 

as �̆�1, �̆�2, and �̆�3, the three-point Richardson extrapolation for the American put 

option could be expressed as follows: 

�̆�𝐴 =
1

2
(�̆�1 − 8�̆�2 + 9�̆�3)                         (14) 



13 

 

where �̆�𝐴 denotes the approximated American put option value. Our approach may 

not be limited to the GBM price process, and 𝑀𝑡  could follow a very general 

continuous-time stochastic process whose transition density is known. 

 

2.2 Intraday characteristic function 

We next extend this new efficient scheme to pricing European options on stocks 

which pay discrete dividends in markets with daily price limits. We first extend the 

intraday density function of Guo and Chang (2020) to a multi-day density function for 

stocks in markets with daily price limits. Consider an example of a European option 

with maturity T  on stocks with daily price limits defined as follows: (A.1) price 

limits are determined by stock prices at date 𝑡𝑖, where 𝑖 = 0,⋯ ,𝑁 and 𝑡0 = 0 <

𝑡1 < 𝑡2 < 𝑡3 < ⋯ < 𝑡𝑁 = 𝑇. The time interval between 𝑡𝑖 and 𝑡𝑖+1 is often one day. 

(A.2) In each time interval, the pricing process is a function of a geometric Brownian 

motion until price limits are reached. (A.3) After reaching a boundary, the stock price 

may remain on the boundary for a time or rebound away from the boundary. Hence, as 

Ban et al. (2000) claimed, the least complicated natural process in each time interval 

is given by the following stochastic differential equation: 

{

𝑑𝑆𝑡 = 𝜎𝑆𝑡𝐼(𝑎,𝑏)(𝑆𝑡)𝑑𝑊𝑡 + 𝜃𝑆𝑡𝐼(𝑎,𝑏)(𝑆𝑡)𝑑𝑡 + 𝛿1𝑑∅𝑡 − 𝛿2𝑑𝜑𝑡
𝐼{𝑎}𝑑𝑡 = 𝜌1𝑑∅𝑡
𝐼{𝑏}𝑑𝑡 = 𝜌2𝑑𝜑𝑡,

           (15) 

where 𝑊𝑡 denotes a standard Brownian motion, 𝜃 denotes the drift term, and 𝜙 
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and 𝜑 are, respectively, local times at 𝑎 (the lower bound) and 𝑏 (the upper bound) 

under the physical measure. 𝜌 is the viscosity of the boundary with 𝜌 ≥ 0; larger 

values of 𝜌 could inhibit the change in the stock price. 𝛿(≥ 0) denotes the elasticity 

of the boundary; as 𝛿 increases, the stock price rebounds more violently. This is Ban 

et al.’s (2000) intraday model of daily price limit markets. With the vanishing 

transaction cost technique, Ban et al. (2000) showed that the transaction cost vanishes 

sufficiently fast and the hedging error vanishes as the size of the discretization interval 

shrinks to zero. Therefore, they derived the following intraday partial differential 

equation (PDE) for the value of the contingent claim C with maturity 𝑇 under the 

price-limit process described by Eq. (16): 

{
 
 

 
 
𝜕𝐶

𝜕𝑡
(𝑆, 𝑡) +

1

2
𝜎2𝑆2

𝜕2𝐶

𝜕𝑆2
(𝑆, 𝑡) + 𝑟𝑆

𝜕𝐶

𝜕𝑆
(𝑆, 𝑡) − 𝑟𝐶(𝑆, 𝑡) = 0

𝐶(𝑆, 𝑇) = 𝑌(𝑆)
𝜕𝐶

𝜕𝑡
(𝑎, 𝑡) + 𝑟𝑎

𝜕𝐶

𝜕𝑆
(𝑎, 𝑡) − 𝑟𝐶(𝑎, 𝑡) = 0

𝜕𝐶

𝜕𝑡
(𝑏, 𝑡) + 𝑟𝑏

𝜕𝐶

𝜕𝑆
(𝑏, 𝑡) − 𝑟𝐶(𝑏, 𝑡) = 0

          (16) 

where (𝑆, 𝑡) ∈ [𝑎, 𝑏] × [0, 𝑇], r denotes the risk-free rate, and 𝑌(𝑆) is the value of 

the contingent claim expired at the end of the day. Because the differential equations 

of Ban et al. (2000) are independent of risk preferences and local time terms, if risk 

preferences and local time terms do not enter the equations, they cannot affect their 

solution. A very simple assumption can be made that all investors are risk neutral and 

both boundaries (𝛿1=𝛿2=0) are absorptive. Therefore, the new process becomes 

𝑑𝑆𝑡/𝑆𝑡=𝜗𝐼(𝑎,𝑏)(𝑆𝑡) 𝑑𝑡+𝜎𝐼(𝑎,𝑏)(𝑆𝑡)𝑑𝑊�̃�, where 𝜗 denotes the drift parameter and 𝑊�̃� 
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denotes a standard Brownian motion under the risk-neutral measure. The drift 

parameter 𝜗 can be determined with the requirement of retaining the Martingale 

property.
7
 After defining 𝑍𝑡=ln 𝑆𝑡 and applying Itô’s lemma, we have 

𝑑𝑍𝑡 = (𝜗 −
1

2
𝜎2) 𝐼(𝐿,𝑈)(𝑍𝑡)𝑑𝑡 + 𝜎𝐼(𝐿,𝑈)(𝑍𝑡)𝑑�̃�𝑡 

≡ 𝜇𝐼(𝐿,𝑈)(𝑍𝑡)𝑑𝑡 + 𝜎𝐼(𝐿,𝑈)(𝑍𝑡)𝑑�̃�𝑡                      (17) 

where 𝜇=𝜗 -𝜎2/2 , and L {= 𝑙𝑛(𝑎) = 𝑙𝑛 [(1 − 𝛼)𝑆0]} and U {= ln(𝑏) = ln [(1 +

𝛽)𝑆0]} are the lower bound and upper bound of 𝑍𝑡 , respectively. If 𝛼 = 𝛽 = 𝛾, 

[𝐿, 𝑈] = [𝑍0 + ln (1 − 𝛾), 𝑍0 + ln (1 + 𝛾)] . Thus, the intraday transition density 

𝑝(𝑡, 𝑍0, 𝑍𝑡) with 𝐿 < 𝑍𝑡 < 𝑈 must satisfy the following backward equation
8
: 

{
 
 

 
 
𝜕𝑝

𝜕𝑡
=

1

2
𝜎2

𝜕2𝑝

𝜕𝑥2
+ 𝜇

𝜕𝑝

𝜕𝑥
,      𝑡 > 0, 𝐿 < 𝑥 < 𝑈, 𝐿 < 𝑦 < 𝑈

lim𝑥→𝐿 𝑝(𝑡, 𝑥, 𝑦) = 0,          𝑡 > 0, 𝐿 < 𝑦 < 𝑈

lim𝑥→𝑈 𝑝(𝑡, 𝑥, 𝑦) = 0,          𝑡 > 0, 𝐿 < 𝑦 < 𝑈

lim𝑡→0 𝑝(𝑡, 𝑥, 𝑦) = 𝛿(𝑦 − 𝑥), 𝐿 < 𝑥 < 𝑈 , 𝐿 < 𝑦 < 𝑈,

              (18) 

where 𝑥 = 𝑍0 , 𝑦 = 𝑍𝑡 , and 𝛿  denotes the Dirac delta function. Substituting 

𝑥 = �̂� + 𝐿, 𝑦 = �̂� + 𝐿, and 𝑑 = 𝑈 − 𝐿 into 𝑝(𝑡, 𝑥, 𝑦) yields �̂�(𝑡, �̂�, �̂�), satisfying
9
 

{
 
 

 
 
𝜕𝑝

𝜕𝑡
=

1

2
𝜎2

𝜕2𝑝

𝜕�̂�2
+ 𝜇

𝜕𝑝

𝜕�̂�
,      𝑡 > 0,0 < �̂� < 𝑑, 0 < �̂� < 𝑑

lim�̂�→0 �̂�(𝑡, �̂�, �̂�) = 0,          𝑡 > 0,0 < �̂� < 𝑑

lim�̂�→𝑑 �̂�(𝑡, �̂�, �̂�) = 0,          𝑡 > 0,0 < �̂� < 𝑑 

lim𝑡→0 �̂�(𝑡, �̂�, �̂�) = 𝛿(�̂� − �̂�), 0 < �̂� < 𝑑 ,0 < �̂� < 𝑑.

              (19) 

Guo and Chang (2020) show that  

                                                 
7
 The measure that meets the requirement of �̃�[𝑒−𝑟𝑇𝑆𝑇|𝑆0] = 𝑆0  is called the 

risk-neutral measure (see Kou and Wang, 2004). 
8
 Please refer to Bhattacharya and Waymire (1990) for details of the backward 

equation. 
9

 Note that 𝑝(𝑡, 𝑥, 𝑦) = �̂�(𝑡, �̂�, �̂�)  with the specification of 𝑥 = �̂� + 𝐿  and 

y = �̂� + 𝐿. 
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𝑝(𝑡, 𝑥, 𝑦) = �̂�(𝑡, �̂�, �̂�) = �̂�(𝑡, 𝑥 − 𝐿, 𝑦 − 𝐿) 

=
2

𝑈−𝐿
𝑒𝑥𝑝 {

𝜇(𝑦−𝑥)

𝜎2
−

𝜇2𝑡

2𝜎2
}∑ 𝑒𝑥𝑝 {−

𝑚2𝜋2𝜎2𝑡

2(𝑈−𝐿)2
}∞

𝑚=1 × 𝑠𝑖𝑛 (
𝑚𝜋(𝑥−𝐿)

𝑈−𝐿
) 𝑠𝑖𝑛 (

𝑚𝜋(𝑦−𝐿)

𝑈−𝐿
)   

(20) 

where 𝑡 > 0, 𝐿 < 𝑥, and 𝑦 < 𝑈. In addition,  

𝑝(𝑡, 𝑥, {𝐿}) = Π𝑥(𝜏𝐿 < 𝜏𝑈) − ∫ Π𝑦(𝜏𝐿 < 𝜏𝑈)𝑝(𝑡, 𝑥, 𝑦)𝑑𝑦
𝑈

𝐿
,           (21) 

and  

𝑝(𝑡, 𝑥, {𝑈}) = Π𝑥(𝜏𝑈 < 𝜏𝐿) − ∫ Π𝑦(𝜏𝑈 < 𝜏𝐿)𝑝(𝑡, 𝑥, 𝑦)𝑑𝑦
𝑈

𝐿
,           (22) 

where 𝜏𝐿 and 𝜏𝑈 denote the stopping time at L and U, respectively. Given the initial 

position 𝑍0 = 𝑥, the expression Π𝑥(𝜏𝐿 < 𝜏𝑈) and Π𝑥(𝜏𝑈 < 𝜏𝐿) can be defined and 

given by
10

  

{
Π𝑥(𝜏𝐿 < 𝜏𝑈) =

1−exp(2𝜇(𝑈−𝑥) 𝜎2⁄ )

1−exp(2𝜇(𝑈−𝐿) 𝜎2⁄ )
  

Π𝑥(𝜏𝑈 < 𝜏𝐿) =
1−exp(−2𝜇(𝑥−𝐿) 𝜎2⁄ )

1−exp(−2𝜇(𝑈−𝐿) 𝜎2⁄ )
.
                          (23) 

Given the intraday transition density under the chosen measure, the intraday 

characteristic function can be further deduced. The characteristic function is defined 

by 

𝐽1(𝜙, 𝑍0, 𝑡1) ≡ �̃�[𝑒𝑥𝑝(𝑖𝜙𝑍𝑡1)|𝑍0] 

= ∫ 𝑒𝑖𝜙𝑦𝑝(𝑡1, 𝑥, 𝑦)𝑑𝑦
𝑈

𝐿
+ 𝑒𝑖𝜙𝐿𝑝(𝑡1, 𝑥, {𝐿}) + 𝑒

𝑖𝜙𝑈𝑝(𝑡1, 𝑥, {𝑈}).         (24) 

Note that 𝑝(𝑡1, 𝑥, {𝐿}) and 𝑝(𝑡1, 𝑥, {𝑈}) are constants because they depend only on 

𝜗, 𝜎, 𝛼, and 𝛽. The characteristic function of the closing price is given by 

                                                 
10

 Please refer to Bhattacharya and Waymire (1990) for details of the proof. 
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𝐽1(𝜙, 𝑍0, 𝑡1) 

= 𝑒𝑖𝜙𝑍0{𝐶 ∑ 𝐹𝑚𝐺𝑚(𝜙)
∞
𝑚=1 + (1 − 𝛼)𝑖𝜙𝑝(𝑡1, 𝑥, {𝐿}) + (1 + 𝛽)

𝑖𝜙𝑝(𝑡1, 𝑥, {𝑈})},   (25) 

where 𝐶 =
2

𝑈−𝐿
𝑒𝑥𝑝 (

−𝜇2𝑡1

2𝜎2
) 𝑒𝑥𝑝 (

𝜇𝑙𝑛 (1−𝛼)

𝜎2
) , 𝐹𝑚 = 𝑒𝑥𝑝

−𝑚2𝜋2𝜎2𝑡1

2𝑑2
𝑠𝑖𝑛 (

−𝑚𝜋 𝑙𝑛(1−𝛼)

𝑈−𝐿
) , 

and 𝐺𝑚(𝜙) = exp(𝑖𝜙 ln(1 − 𝛼))∫ 𝑒𝑥𝑝 (
(𝑖𝜙𝜎2+𝜇)𝑦

𝜎2
)

𝑈−𝐿

0
sin (

𝑚𝜋𝑦

𝑈−𝐿
) 𝑑𝑦 . Note that 

𝐽1(𝜙, 𝑍0, 𝑡1) contains two parts, which are 𝑒𝑖𝜙𝑍0 and 

𝐻(𝜙, 𝑡1, 𝛼, 𝛽) = 𝐶 ∑ 𝐹𝑚𝐺𝑚(𝜙)
∞
𝑚=1 + (1 − 𝛼)𝑖𝜙𝑝(𝑡1, 𝑥, {𝐿}) + (1 + 𝛽)

𝑖𝜙𝑝(𝑡1, 𝑥, {𝑈}), 

(26) 

where 𝐻(𝜙, 𝑡1, 𝛼, 𝛽) is a function of 𝜙 without 𝑍0. Therefore, under the chosen 

measure, the multiday characteristic function of the logarithm price at the end of the 

N
th

 day is 

𝐽𝑁(𝜙, 𝑍0, 𝑡𝑁) ≡ �̃�[𝑒𝑥𝑝(𝑖𝜙𝑍𝑡𝑁)|𝑍0] = 𝑒𝑖𝜙𝑍0𝐻(𝜙, 𝑡1, 𝛼, 𝛽)
𝑁           (27) 

where 𝑡1 is the time period of one time interval (one day). 

 

2.3 Pricing option using the fast Fourier transform (FFT) 

Given the characteristic function of the logarithm price, Carr and Madan (1999) show 

that the call price can be obtained numerically using the inverse transform 

𝐶𝑇(𝑘) =
𝑒𝑥𝑝(−�̂�𝑘)

𝜋
∫ 𝑒−𝑖𝑣𝑘𝜓𝑇(𝑣)𝑑𝑣
∞

0
                     (28) 

for a range of positive values of α̂, where 𝑘 = 𝑙𝑜𝑔 (𝐾), and 

𝜓𝑇(𝑣) =
𝑒−𝑟𝑇𝐽𝑁+𝜂(𝑣−(α̂+1)𝑖,𝑍0,𝑇)

α̂2+α̂−𝑣2+𝑖(2α̂+1)𝑣
.                      (29) 



18 

 

In order to avoid a highly oscillatory integrand in the Fourier inversion for out-of-the 

money options with very short maturities, Carr and Madan (1999) further suggest 

using 

𝐶𝑇(𝑘) =
1

𝑠𝑖𝑛ℎ(α̂𝑘)

1

2𝜋
∫ 𝑒−𝑖𝑣𝑘𝛾𝑇(𝑣)𝑑𝑣
∞

−∞
                  (30) 

where 𝛾𝑇(𝑣) = (𝜁𝑇(𝑣 − 𝑖α̂) − 𝜁𝑇(𝑣 + 𝑖α̂)) 2⁄  and  

𝜁𝑇(𝑣) = 𝑒−𝑟𝑇 (
1

1+𝑖𝑣
−
𝑒𝑟𝑇

𝑖𝑣
−
𝐽𝑁+𝜂(𝑣−𝑖,𝑍0,𝑇)

𝑣2−𝑖𝑣
).                (31) 

Hence, the approximation for 𝐶𝑇(𝑘) in Eq. (32) using the fast Fourier transform 

(FTT) is given by 

𝐶𝑇(𝑘𝑢) =
𝑒𝑥𝑝(−α̂𝑘𝑢)

𝜋
∑ 𝑒−𝑖

2𝜋

𝑀
(𝑗−1)(𝑢−1)𝑒𝑖𝑏𝑣𝑗𝜓(𝑣𝑗)

𝜉

3
[3 + (−1)𝑗 − 𝜚𝑗−1]

𝑀
𝑗=1       (32) 

where 𝑣𝑗 = 𝜉(𝑗 − 1) , 𝑘𝑢 = −𝑏 + 𝜆(𝑢 − 1)  for 𝑢 = 1,2,⋯ ,𝑀 , 𝑏 = 𝑀𝜆 2⁄ , 

λξ = 2𝜋 𝑀⁄ , and 𝜚𝑛 is the Kronecker delta function that is unity for 𝑛 = 0 and zero 

otherwise. The use of the FFT for calculating out-of-the-money option prices is given 

by 

𝐶𝑇(𝑘𝑢) =
1

sinh (α̂𝑘𝑢)

1

𝜋
∑ 𝑒−𝑖

2𝜋

𝑀
(𝑗−1)(𝑢−1)𝑒𝑖𝑏𝑣𝑗𝛾(𝑣𝑗)

𝜉

3
[3 + (−1)𝑗 − 𝜚𝑗−1]

𝑀
𝑗=1 .     (33) 

 

2.4 Multi-day density function 

To derive the multi-day density function, we consider the following 

transformation 

𝑝𝑁(𝑡𝑁 , 𝑥, 𝑦) =
1

2𝜋
∫ 𝑒−𝑖𝜙𝑦𝐽𝑁(𝜙, 𝑍0, 𝑡𝑁)
∞

−∞
𝑑𝜙                 (34) 
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where 𝑥 = 𝑍0 and 𝑦 = 𝑍𝑡𝑁 . Then, we apply our multi-day density function with the 

framework of Haug et al. (2003) to value a Euro-style equity option on a stock that 

pays a discrete dividend. We write 𝐶𝐸(𝑆0, 0; 𝐷, 𝑡𝐷) for the time-0 fair value of a 

European call option that expires at time 𝑇 in the presence of a discrete dividend 𝐷 

paid at time-𝑡𝐷. According to Eq. (3), we have 

𝐶𝐸(𝑆0, 0; 𝐷, 𝑡𝐷) = 𝑒
−𝑟𝑡𝐷 ∫ 𝐶𝐸(𝑆𝑡𝐷− − 𝒟(𝑆𝑡𝐷−), 𝑡𝐷)

∞

0
𝑝𝑁(𝑡𝐷

−, 𝑙𝑛𝑆0, 𝑙𝑛𝑆𝑡𝐷−)
1

𝑆𝑡𝐷
−
𝑑𝑆𝑡𝐷− .    

(35) 

where 𝐶𝐸(𝑆𝑡, 𝑡) is the time-𝑡 price of a European call option expired at time 𝑇 

on a non-dividend paying stock. In the case of liquidator dividend policy, namely 

𝐷(𝑀) = ∆(𝑀−) = 𝑀−, we have  

𝐶𝐸(𝑆0, 0; 𝐷, 𝑡𝐷) = 𝑒
−𝑟𝑡𝐷 ∫ 𝐶𝐸(𝑆𝑡𝐷− − 𝐷, 𝑡𝐷)

∞

𝐷
𝑝𝑁(𝑡𝐷

−, 𝑙𝑛𝑆0, 𝑙𝑛𝑆𝑡𝐷−)
1

𝑆𝑡𝐷
−
𝑑𝑆𝑡𝐷− .      (36) 

To calculate the integral of Eq. (36), we use the Riemann sum to approximate the 

integral as 

𝑒−𝑟𝑡𝑑 ∑ 𝑉𝐸(𝑀 − 𝐷(𝑀), 𝑡𝐷)𝜙(𝑀0, 𝑀, 𝑡𝐷)∆𝑀
𝑀=𝑀𝑚𝑎𝑥
𝑀=𝑀𝑚𝑖𝑛

                (37) 

where the 𝑀𝑚𝑖𝑛(=max(D, 𝑆0(1 − 𝐿)
𝑁))and 𝑀𝑚𝑎𝑥(=𝑆0(1 + 𝑈)

𝑁) are the minimum 

and maximum stock prices prior to the ex-dividend moment in markets with daily 

price limits. 

 

2.5 Early exercise premium 
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As for American put options, it is difficult to find an analytical solution to the 

boundary and we focus on numerical solutions. With the Richardson three-point 

extrapolation, the numerical put option value could be solved quickly as long as the 

boundary is known. Eq. (7) shows the early exercise premium (EEP) of an American 

put option: 

𝐸𝐸𝑃 = 𝑟𝐾 ∫ 𝑒−𝑟(𝑠−𝑡) {∫ 𝜙(𝑀𝑡, 𝑀, 𝑠 − 𝑡)𝑑𝑀
𝑀∗(𝑠)

0
}

𝑇

𝑡
𝑑𝑠                    (38) 

Let 𝑧 = log(𝑀) , z∗(𝑡) = log(𝑀∗(𝑡)) and 𝑘 = log (𝑀∗(𝑠)), Eq. (38) can be rewritten 

as: 

𝑟𝐾 ∫ 𝑒−𝑟(𝑠−𝑡) {∫ 𝜙(𝑧∗(𝑡), 𝑧, 𝑠 − 𝑡)𝑑𝑧
𝑘

−∞
} 𝑑𝑠

𝑇

𝑡
                (39) 

Eq. (27) gives the multiday characteristic function of the logarithm price at the end of 

the N
th

 day. 𝐽𝑁(𝑣) is 𝑒𝑖𝑣𝑧0𝐻𝑁, given Z0, so we can imply the (s-t) days characteristic 

function as follows: 

                      𝐽𝑁(𝑣) = 𝑒
𝑖𝑣log (𝑀∗(𝑡))𝐻𝑠−𝑡                                   

(40) 

with 𝑁 = 𝑠 − 𝑡  and 𝑍0 = 𝑙𝑜𝑔 (𝑀
∗(𝑡)) . The logarithm (s-t)-day price density 

function could be calculated by the Fourier transformation: 

𝜙(𝑧∗(𝑡), 𝑧, 𝑠 − 𝑡) =
1

2𝜋
∫ 𝑒−𝑖𝑣𝑧𝐽𝑁(𝑣)𝑑𝑣
∞

−∞
=

1

2𝜋
∫ 𝑒−𝑖𝑣𝑧𝑒𝑖𝑣𝑧

∗(𝑡)𝐻𝑠−𝑡𝑑𝑣
∞

−∞
         (41) 

Therefore, Eq. (39) can be rewritten into 

𝐸𝐸𝑃 = 𝑟𝐾 ∫ 𝑒−𝑟(𝑠−𝑡) {∫
1

2𝜋
(∫ 𝑒−𝑖𝑣𝑧𝑒𝑖𝑣𝑧

∗(𝑡)𝐻𝑠−𝑡𝑑𝑣)
∞

−∞
𝑑𝑧

𝑘

−∞
} 𝑑𝑠

𝑇

𝑡
          (42) 

After changing the integral order in Eq. (42), we have: 

𝑟𝐾 ∫
1

2𝜋
∫ 𝑒−𝑖𝑣𝑧𝑒𝑖𝑣𝑧

∗(𝑡) {∫ 𝑒−𝑟(𝑠−𝑡)𝐻𝑠−𝑡𝑑𝑠
𝑇

𝑡
} 𝑑𝑣

∞

−∞
𝑑𝑧

𝑘

−∞
.             (43) 

After defining 𝐽′(𝑣) as: 

𝐽′(𝑣) ≡ 𝑒𝑖𝑣𝑧
∗(𝑡) {∫ 𝑒−𝑟(𝑠−𝑡)𝐻𝑠−𝑡𝑑𝑠

𝑇

𝑡

} 

=𝑒𝑖𝑣𝑧
∗(𝑡) 1−𝑒

−𝑟(𝑇−𝑡)𝐻(𝑇−𝑡)

𝑟−log (𝐻)
=
𝐽0(𝑣,𝑧

∗(𝑡),𝑡0)−𝑒
−𝑟(𝑇−𝑡)𝐽𝑁(𝑣,𝑧

∗(𝑡),𝑇−𝑡 )

𝑟−log(𝐻)
          (44) 
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where 𝑁 = 𝑇 − 𝑡, we could simplify Eq. (43) as follows  

𝐸𝐸𝑃 = 𝑟𝐾 ∫
1

2𝜋
∫ 𝑒−𝑖𝑣𝑧𝐽′(𝑣)𝑑𝑣
∞

−∞
𝑑𝑧

𝑘

−∞
.                   (45) 

It is clear that the inner integral of Eq. (45) is also a Fourier transform, which means 

there exists 𝑞′(𝑧) =
1

2𝜋
∫ 𝑒−𝑖𝑣𝑧𝐽′(𝑣)𝑑𝑣
∞

−∞
 such that  𝐽′(𝑣) = ∫ 𝑒𝑖𝑣𝑧𝑞′(𝑧)𝑑𝑧

∞

−∞
. 

Then Eq. (45) could be abbreviated as: 

 𝐸𝐸𝑃 = 𝑟𝐾 ∫ 𝑞′(𝑧)𝑑𝑧
𝑘

−∞
                          (46) 

Finally, we let 

𝐺′(𝑘) ≡ ∫ 𝑞′(𝑧)𝑑𝑧
𝑘

−∞
= ∫

1

2𝜋
∫  𝑒−𝑖𝑣𝑧𝐽′(𝑣)𝑑𝑣
∞

−∞
𝑑𝑧

𝑘

−∞
             (47) 

We define  𝑔′(𝑘) ≡ 𝑒−𝛼𝑘𝐺′(𝑘)  and   𝜓′(𝑣) ≡ ∫ 𝑒𝑖𝑣𝑘𝑔′(𝑘)𝑑𝑘
∞

−∞
. After applying an 

inverse Fourier transformation, we have 

𝐺′(𝑘) =
𝑒𝛼𝑘

2𝜋
∫ 𝑒−𝑖𝑣𝑘𝜓′(𝑣)𝑑𝑣
∞

−∞
.                  

   (48) 

After changing the integral order, we have  

𝜓′(𝑣) = ∫ 𝑒𝑖𝑣𝑘∫ 𝑒−𝛼𝑘𝑞′(𝑧)𝑑𝑧
𝑘

−∞

𝑑𝑘
∞

−∞

 

      = ∫ ∫ 𝑒(𝑖𝑣−𝛼)𝑘𝑑𝑘
∞

𝑧
𝑞′(𝑧)𝑑𝑧

∞

−∞
= ∫

𝑒𝑖(𝑣+𝑖𝛼)𝑧

𝛼−𝑖𝑣
𝑞′(𝑧)𝑑𝑧

∞

−∞
=

𝐽′𝑣(𝑣+𝑖𝛼)

𝛼−𝑖𝑣
 .        (4

9) 

With 𝛼 > 1, we have the EEP 

𝐸𝐸𝑃 = 𝑟𝐾
𝑒𝛼𝑘

2𝜋
∫ 𝑒−𝑖𝑣𝑘𝜓′(𝑣)𝑑𝑣
∞

−∞
,                    (50) 

With 𝛼 > 1, the approximation for EEP in Eq. (50) using FFT is given by 

𝐸𝐸𝑃(𝑘𝑢) = 𝑟𝐾
𝑒𝑥𝑝(α̂𝑘𝑢)

𝜋
∑ 𝑒−𝑖

2𝜋

𝑀
(𝑗−1)(𝑢−1)𝑒𝑖𝑏𝑣𝑗𝜓′(𝑣𝑗)

𝜉

3
[3 + (−1)𝑗 − 𝜚𝑗−1]

𝑀
𝑗=1 ,   (51) 

where 𝑣𝑗 = 𝜉(𝑗 − 1) , 𝑘𝑢 = −𝑏 + 𝜆(𝑢 − 1)  for 𝑢 = 1, 2,⋯ ,𝑀 , 𝑏 = 𝑀𝜆 2⁄ , 

λξ = 2𝜋 𝑀⁄ , and 𝜚𝑛 is the Kronecker delta function that is unity for 𝑛 = 0 and zero 

otherwise. 
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III. Numerical Results and Findings 

3.1 Numerical results 

In this section, we discuss the influence of discrete dividends on distribution in daily 

price limit markets by comparing the results of the proposed numerical solutions with 

simulations. Table 1 shows the solutions of Guo and Chang (2020) (denoted by GC) 

and our proposed three-point Richardson extrapolation solutions of the Chang et al. 

(2016) framework (denoted by RE) are consistent with the results of Monte Carlo 

simulations (denoted by MC) for European options and those of the least square 

Monte Carlo simulations (denoted by LSMC) for American options on stocks without 

dividends in daily price limit markets.
11

 The differences between the analytic 

solutions and MC are quite small. As for the computation time in the framework of 

Chang et al. (2016), our extended solution seems not to increase with the time to 

maturity. Our method has a great advantage in time consumption. For example, Table 

1 shows that the computation time of our numerical solution is much less than the MC 

and LSMC. The computation time of our solution may consume more time for 

American put options, but it seems not to increase with the time to maturity and is 

apparently between six and seven seconds. However, the computation time of LSMC 

                                                 
11

 According to Hull (2000), American calls on stocks without dividends have no 

reason to be early exercised and could be treated as European ones. 
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often quickly increases as the time to maturity increases. The comparison of the 

computation time of these two methods shows that the Richardson extrapolation is 

quite accurate and effective for the EEP in markets with daily price limits. 

Tables 2 and 3 show the results of our proposed method in the Haug et al. (2003) 

framework (denoted by HF) when there is a discrete dividend D distributed at the half 

time of maturity T/2. Our numerical solutions denoted by HF are consistent with the 

MC. The differences between our analytic solutions and MC are less than 0.8% except 

for some out-of-money European calls. Comparing Tables 1 and 2, we note that 

discrete dividends actually decrease call option values but increase put option values. 

Put option values seem to increase with amplitude of D but call option values seem to 

reduce much less than D. There is a similar phenomenon for American options. 

As for American put options on stocks with discrete dividends, the possibility to 

early exercise in markets with daily price limits and ex-dividends would affect option 

values. For illustration, we consider an American put option with time to maturity 

T=24 days, and time to ex-dividend T/2=12 days in markets with a daily price limit of 

10%. Figure 1 shows that we may not find the early exercise boundary prior to the 

ex-dividend day. We note that even without the dividend (D=0), the stock price in 

markets with daily price limits could not fall below the dotted red line to reach the 

early exercise boundary (the solid red line) before the eighth day. The reason is that 
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the stock price is restrained by the mechanism of daily price limits to trigger the 

behavior of early exercise before the eighth day.  

Taking the event of ex-dividend into account, the dotted green line (denoted by 

D=5) and the solid blue line (denoted by D=10) in Figure 1 are both even higher than 

the red line (denoted by the no-dividend case D=0) illustrating that ex-dividend 

actually increases the possibility to early exercise after the ex-dividend day. The early 

exercise boundary heavily depends on the discrete dividend D. If it was possible to 

exercise early before the ex-dividend, the early exercise boundary for D=5 or D=10 

would be much lower than that for the no-dividend case. However, as we mentioned 

above, the stock price could be restrained by the mechanism of daily price limits to 

trigger the behavior of early exercise prior to the ex-dividend day. If it is not possible 

to exercise early prior to the ex-dividend day, we could focus on deriving the early 

exercise boundary posterior to the ex-dividend day for pricing American puts in 

markets with daily price limits. Table 3 shows that all the differences between our 

method and LSMC are smaller than 0.3% for American put options. And all the 

differences between our method and LSMC are smaller than 0.9% for American call 

options. Our proposed solutions are in line with the LSMC. Table 3 shows that our 

method also seems to have a greater advantage in the computation time for American 

options on stocks with a discrete dividend. For example, when 𝑆0 = 100 and 𝑇 = 6, 



25 

 

the computation time of an American call respectively required by the HFR and the 

LSMC are 29.44 and 185.04 (sec.).
12

 

 

3.2 Sensitive Analysis and Findings 

Figure 2 shows the relationship between daily price limits (𝛾) and early exercise 

boundaries of options on stocks without dividends. A more restrictive daily price limit 

seems to incur an earlier exercise boundary. However, when the daily price limit is 

10% or greater, there seems to be little difference between early exercise boundaries. 

Figure 3 illustrates the relationship between the interest rate and the early exercise 

boundary for options on stocks with discrete dividends and shows that the interest rate 

could have a great influence on the early exercise boundary. When interest rates are 

positive, the higher the interest rate is, the earlier the put option could be exercised. 

On the contrary, when interest rates are negative, put options could be exercised 

earlier as interest rates become more negative. Figure 4 shows that the early exercise 

boundaries in the case of the negative interest rates. Compared to Figure 1, we notice 

                                                 
12

 As for options on stocks with two discrete dividends, Table A1 in the appendix 

shows that our framework also works well and the differences between the results of 

our method and the simulation are less than 1.3% except for some out-of-money 

European call. Therefore, our method could correctly value options on stocks even 

with several discrete dividends. However, it may be more time-consuming than the 

simulation method when there is more than one discrete dividend because of triple 

numerical integrals.  
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that, in the case of negative interest rates, all the boundaries commonly go down and 

also seem to heavily depend on the discrete dividend D. Figure 5 shows that daily 

price limits force American put options on stocks with discrete dividends to be 

exercised earlier when the daily price limits become more restrictive. Although the 

daily price limits greater than 10% may have little influence on the early exercise 

behavior of options on stocks without dividends (see Figure 2), we find that a 

narrower daily price limit moves up the early exercise boundary of options on stocks 

with discrete dividends. Figures 6 and 7 further indicate that the early exercise 

boundary for puts on stocks with a discrete dividend is primarily affected by the lower 

limit instead of the upper limit. 

 Figure 8 compares the difference between the daily-price limit model and the 

Black-Scholes (denoted by BS) approximating model whose volatility was implied by 

option values of Guo and Chang (2020). The shapes of both distributions are quite 

similar to each other. Because of the simplicity of the BS density function, it could be 

reasonable to approximate the probability density of stock prices in markets with 10% 

(or greater) daily price limits by the density function of the BS model in order to 

accelerate the computation when there is more than one discrete dividend. 

 Tables 4 and 5 exhibit our results from the approximation of the stock density 

function in markets with daily price limits by the density function of the BS model. 
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With this technique, the complicated calculation of the FFT for the probability density 

could be circumvented. All of the differences between the simulation and HF (or HFR) 

are smaller than 1% except for OTM calls; the time consumption is also much less 

than both the MC and the LSMC. 

 

IV. Conclusion 

In the valuation of American options, the derivation of the early exercise boundary 

often involves a recursive and numerical computation and poses practical problems. 

We find that the three-point Richardson extrapolation improves the computation 

efficiency of the EEP and extends this new efficient scheme to pricing options on 

stocks paying discrete dividends in markets with daily price limits. To the best of our 

knowledge, no study has yet applied this methodology for equity options on stocks 

paying discrete dividends in markets with daily price limits.  

We first extend the intraday density function of Guo and Chang (2020) to a 

multi-day density function for stocks in markets with daily price limits. Then, we 

apply our multi-day density function using the framework of Haug et al. (2003) to 

value European options on stocks paying discrete dividends. Moreover, we build an 

efficient formula and take advantage of FFT to quickly calculate the EEP in markets 

with daily price limits. We also adopt the three-point Richardson extrapolation to 
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accelerate the computation of American options. The accuracy of our proposed 

method is further verified by simulations. The mechanism of the daily-price limits 

would force American put options to be barely exercised before the ex-dividend. 

However, daily price limits could make exercising prior to the ex-dividend impossible 

for short-term put options. We also note that the early exercise boundary goes up 

when either the positive interest rate or the dividend increases. With fixed dividends, 

more restrictive daily price limits could force put options to be exercised earlier. In 

addition, early exercise boundaries could be more sensitive for positive interest rates 

than for negative interest rates; the lower limit is the primary factor affecting the early 

exercise boundary for American puts. Finally, we propose an alternative method to 

approximate the daily-price limit model by the B-S model under some constraints to 

accelerate the computation. 
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Table 1. Options on Stocks without Dividends in Markets with Daily Price Limits 

Model parameter specifications: r=1%, K=100, σ =70%, daily price limit 𝛾=10%, T measured in days, and computation time measured in 

seconds. GC denotes the solution of Guo and Chang (2020). We set ξ=0.1702, �̂� =1.1 and use 4096 points in the quadrature. MC denotes the 

Monte Carlo simulation, which has 100,000 paths and 100 time steps in one day. Numbers in brackets denote standard deviations of MC. The 

absolute value of the different between GC and MC divided by MC is denoted by Diff. RE denotes our proposed three-point Richardson 

extrapolation solutions of the Chang et al. (2016) framework. LSMC denotes the least square Monte Carlo simulation, which has 100,000 paths 

and 100 time steps in one day. Numbers in brackets denote the standard deviations of LSMC. The absolute value of the difference between RE 

and LSMC divided by LSMC is denoted by Diff. 

  European Call European Put American Put 

S0 T GC Time MC Time Diff GC Time MC Time Diff RE Time LSMC Time Diff 

90 6 0.88 0.06 0.88(0.007) 3.10 0.52% 10.86 0.06 10.88(0.005) 3.10 0.15% 10.88 7.14 10.86(0.013) 195.24 0.23% 

 12 2.09 0.06 2.09(0.018) 6.63 0.08% 12.04 0.06 12.08(0.011) 6.63 0.31% 12.06 6.36 12.05(0.017) 684.57 0.07% 

 24 4.11 0.06 4.10(0.015) 16.73 0.30% 14.02 0.06 14.08(0.007) 16.72 0.43% 14.10 7.45 14.04(0.026) 2945.67 0.46% 

100 6 4.30 0.04 4.29(0.012) 3.03 0.23% 4.28 0.04 4.29(0.011) 3.03 0.32% 4.30 6.99 4.28(0.008) 189.60 0.45% 

 12 6.08 0.04 6.06(0.021) 6.61 0.34% 6.04 0.04 6.06(0.015) 6.61 0.43% 6.05 6.34 6.05(0.011) 686.61 0.01% 

 24 8.60 0.04 8.56(0.026) 16.32 0.47% 8.51 0.04 8.56(0.017) 16.31 0.63% 8.59 7.45 8.54(0.014) 2934.92 0.64% 

110 6 11.18 0.03 11.17(0.012) 3.04 0.08% 1.16 0.04 1.17(0.008) 3.04 1.21% 1.18 6.98 1.17(0.007) 177.87 1.14% 

 12 12.61 0.03 12.58(0.024) 6.63 0.21% 2.56 0.04 2.58(0.018) 6.63 0.91% 2.57 6.36 2.58(0.015) 643.20 0.32% 

 24 14.92 0.03 14.84(0.052) 16.84 0.49% 4.82 0.04 4.85(0.031) 16.84 0.63% 4.90 7.43 4.84(0.024) 2821.80 1.27% 
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Table 2. European Options on Stocks with a Discrete Dividend in Markets with Daily Price Limits 

  European Call European Put 

S0 T HF Time MC Time Diff  HF Time MC Time Diff 

90 6 0.10 5.15 0.09(0.003) 3.08 4.50%  20.07 5.16 20.08(0.003) 3.08 0.07% 

 12 0.53 8.87 0.54(0.008) 6.67 1.72%  20.50 9.00 20.53(0.005) 6.67 0.15% 

 24 1.77 18.31 1.77(0.012) 17.07 0.40%  21.67 18.37 21.74(0.005) 17.07 0.30% 

100 6 1.03 5.20 1.02(0.009) 3.07 0.27%  11.01 5.21 11.02(0.006) 3.07 0.08% 

 12 2.35 9.49 2.34(0.01) 6.72 0.14%  12.30 9.56 12.33(0.006) 6.72 0.30% 

 24 4.51 19.75 4.48(0.024) 16.82 0.76%  14.41 19.83 14.47(0.013) 16.82 0.40% 

110 6 4.53 5.27 4.52(0.012) 3.11 0.11%  4.50 5.37 4.52(0.009) 3.11 0.39% 

 12 6.40 10.00 6.39(0.035) 6.67 0.17%  6.35 10.13 6.38(0.024) 6.67 0.55% 

 24 9.05 21.85 9.00(0.037) 16.96 0.56%  8.95 21.99 8.99(0.023) 16.96 0.54% 

Model parameter specifications: r=1%, K=100, σ =70%, D=10, daily price limit 𝛾=10%, T measured in days, and computation time measured in 

seconds. HF denotes the proposed solution using the FFT in the framework of Haug et al. (2003). We set ξ = 0.1702, �̂� =1.1, ∆𝑀=1, and use 

4096 points in the quadrature. The dividend D is assumed to be distributed at the time T/2. MC denotes the Monte Carlo simulation, which has 

100,000 paths and 100 time steps in one day. Numbers in brackets denote standard deviations of MC. The absolute value of the difference 

between HF and MC divided by MC is denoted by Diff. 
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Table 3. American Options on Stocks with a Discrete Dividend in Markets with Daily Price Limits 

  
American Call American Put 

S0 T HFR Time LSMC Time Diff HFR Time LSMC Time Diff 

90 6 0.29 31.28 0.29(0.004) 140.64 0.83% 20.07 31.37 20.09(0.006) 195.24 0.11% 

 
12 1.00 53.92 0.99(0.006) 570.82 0.56% 20.51 49.65 20.51(0.014) 684.57 0.00% 

 
24 2.47 97.56 2.45(0.019) 2611.76 0.72% 21.70 104.23 21.70(0.017) 2945.67 0.02% 

100 6 3.08 29.44 3.08(0.01) 185.04 0.20% 11.00 34.47 10.99(0.012) 189.60 0.06% 

 
12 4.45 54.58 4.43(0.01) 671.21 0.54% 12.31 58.81 12.30(0.015) 686.61 0.10% 

 
24 6.50 104.88 6.44(0.023) 2892.98 0.87% 14.45 112.34 14.42(0.022) 2934.92 0.16% 

110 6 10.42 26.73 10.41(0.014) 198.37 0.13% 4.50 29.86 4.50(0.012) 177.87 0.10% 

 
12 11.27 54.42 11.23(0.014) 705.90 0.35% 6.36 58.88 6.36(0.026) 643.20 0.03% 

 
24 12.92 110.61 12.85(0.022) 3012.30 0.51% 8.98 125.47 8.96(0.026) 2821.80 0.29% 

Model parameter specifications: r=1%, K=100, σ =70%, D=10, daily price limit 𝛾=10%, T measured in days, and computation time measured in 

seconds. HFR denotes the proposed solution using the FFT and Richardson extrapolation in the framework of Haug et al. (2003). We set ξ = 

0.1702, �̂� = 1.1, ∆𝑀= 1, and use 4096 points in the quadrature. The dividend D is assumed to be distributed at the time T/2. LSMC denotes the 

least square Monte Carlo simulation, which has 100,000 paths and 100 time steps in one day. Numbers in brackets denote standard deviations. 

The absolute value of the difference between HFR and LSMC divided by LSMC is denoted by Diff. 
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Table 4. The Efficiency of BS Approximations for European Options on Stocks with a Discrete Dividend in Markets with Daily Price Limits  

   
Call  Put 

S0 T �̂� HF Time MC Time Diff HF Time MC Time Diff 

90 6 69.47% 0.09 3.15 0.09(0.003) 3.08 3.84% 20.07 3.16 20.08(0.003) 3.08 0.07% 

 
12 69.64% 0.54 3.95 0.54(0.008) 6.67 0.39% 20.49 3.98 20.53(0.005) 6.67 0.18% 

 
24 69.67% 1.76 5.05 1.77(0.012) 17.07 0.36% 21.66 5.11 21.74(0.005) 17.07 0.36% 

100 6 69.86% 1.03 3.06 1.02(0.009) 3.07 0.25% 11.00 3.11 11.02(0.006) 3.07 0.16% 

 
12 69.75% 2.34 3.84 2.34(0.010) 6.72 0.30% 12.29 3.88 12.33(0.006) 6.72 0.38% 

 
24 69.69% 4.49 5.03 4.48(0.024) 16.81 0.28% 14.39 5.07 14.47(0.013) 16.81 0.55% 

110 6 69.68% 4.51 2.93 4.52(0.012) 3.11 0.26% 4.48 2.97 4.52(0.009) 3.11 0.76% 

 
12 69.74% 6.38 3.92 6.39(0.035) 6.67 0.09% 6.33 3.94 6.38(0.024) 6.67 0.81% 

 
24 69.71% 9.02 5.24 9.00(0.037) 16.95 0.22% 8.92 5.28 8.99(0.023) 16.95 0.88% 

Model parameter specifications: r=1%, K=100, σ =70%, D=10, daily price limit 𝛾=10%, T measured in days, and computation time measured in 

seconds. HF denotes the proposed solution using the FFT in the framework of Haug et al. (2003). We set ξ =0.1702, �̂� =1.1, ∆𝑀 = 1, and use 

4096 points in the quadrature. The �̂� denotes the implied volatility from the daily-price limit European call option value with the BS model. 

The dividend D is assumed to be distributed at the time T/2. MC denotes the Monte Carlo simulation, which has 100,000 paths and 100 time 

steps in one day. Numbers in brackets denote standard deviations of MC. The absolute value of the difference between HF and MC divided by 

MC is denoted by Diff. 
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Table 5. The Efficiency of BS Approximations for American Options on Stocks with a Discrete Dividend in Markets with Daily Price Limits 

   
American Call 

 
American Put 

S0 T �̂� HFR Time LSMC Time Diff HFR Time LSMC Time Diff 

90 6 69.47% 0.29 16.06 0.29(0.004) 140.64 0.25% 20.06 32.10 20.09(0.006) 195.24 0.14% 

 
12 69.64% 0.99 19.19 0.99(0.006) 570.82 0.47% 20.50 34.73 20.51(0.014) 684.57 0.04% 

 
24 69.67% 2.45 24.50 2.45(0.019) 2611.76 0.05% 21.69 39.14 21.70(0.017) 2945.67 0.08% 

100 6 69.86% 3.07 11.60 3.08(0.010) 185.04 0.11% 11.00 33.93 10.99(0.012) 189.60 0.03% 

 
12 69.75% 4.43 16.09 4.43(0.010) 671.22 0.07% 12.30 37.54 12.30(0.015) 686.61 0.04% 

 
24 69.69% 6.47 21.43 6.44(0.023) 2892.98 0.40% 14.44 43.16 14.42(0.022) 2934.93 0.08% 

110 6 69.68% 10.40 7.99 10.41(0.014) 198.37 0.04% 4.49 35.38 4.50(0.012) 177.88 0.36% 

 
12 69.74% 11.24 12.47 11.23(0.014) 705.90 0.14% 6.36 39.36 6.36(0.026) 643.20 0.10% 

 
24 69.71% 12.88 18.65 12.85(0.022) 3012.30 0.19% 8.97 45.76 8.96(0.026) 2821.80 0.17% 

Model parameter specifications: r=1%, K=100, σ =70%, D=10, daily price limit 𝛾=10%, T measured in days, and computation time measured in 

seconds. HFR denotes the proposed solution using the FFT and Richardson extrapolation in the framework of Haug et al. (2003). We set ξ = 

0.1702, α̂ =1.1 , ∆𝑀=1, and use 4096 points in the quadrature. The �̂� denotes the implied volatility from the daily-price limit European call 

option value with the BS model. The dividend D is assumed to be distributed at the time T/2. LSMC denotes the least square Monte Carlo 

simulation, which has 100,000 paths and 100 time steps in one day. Numbers in brackets denote standard deviations. The absolute value of the 

difference between HFR and LSMC divided by LSMC is denoted by Diff. 
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Figure 1. Early Exercise Boundary for Puts on Stocks with Discrete Dividends in Markets 

with Daily Price Limits 

 

Model parameter specifications: S0 =K=100, r =10%, σ=70%, time to maturity N=24 days, the 

ex-dividend day TD=12, and daily-price limit γ =10%. The line denoted by α =10% is the 

lower boundary of the stock price in markets with daily price limits. 
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Figure 2. A Sensitive Analysis of Early Exercise Boundaries for Puts on Stocks without 

Dividends to Daily Price Limits 

 

Model parameter specifications: S0=K=100, r =10%, σ=70%, time to maturity N=96 days, 

dividend D=0, and daily-price limit denoted by 𝛾.   
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Figure 3. A Sensitive Analysis of Early Exercise Boundaries for Puts on Stocks with a 

Discrete Dividend to Interest Rates (Dividend D Fixed at 10 dollars)  

 

Model parameter specifications: S0 = K = 100, σ =70%, time to maturity N =24 days, dividend 

D =10, ex-dividend day TD =12, and daily-price limit γ =10%. 
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Figure 4. A Sensitive Analysis of Early Exercise Boundaries for Puts to Discrete Dividends 

with Negative Interest Rates 

 

Model parameter specifications: S0 =K=100, r = -10%, σ=70%, time to maturity N=24 days, 

ex-dividend day TD=12, and daily-price limit 𝛾=10%. The line denoted by α =10% is the 

lower boundary of the stock price in markets with daily price limits.  
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Figure 5. A Sensitive Analysis of Early Exercise Boundaries for Puts on Stocks with a 

Discrete Dividend to Daily Price Limits  

 

Model parameter specifications: S0 = K =100, r =10%, σ =70%, time to maturity N 

=24 days, dividend D =5, ex-dividend day TD =12, and daily-price limit denoted by γ.   
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Figure 6. A Sensitive Analysis of Early Exercise Boundaries for Puts on Stocks with a 

Discrete Dividend to Upper Price Limits (Dividend D Fixed at 5)  

 

Model parameter specifications: S0 =K =100, r =10%, σ =70%, time to maturity N =24 

days, dividend D=5, ex-dividend day TD =12, the lower daily-price limit α =10%, and 

the upper daily-price limit denoted by 𝛽.  
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Figure 7. A Sensitive Analysis of Early Exercise Boundaries for Puts on Stocks with a 

Discrete Dividend to Lower Price Limits (Dividend D Fixed at 5)  

 

Model parameter specifications: S0 =K =100, r =10%, σ =70%, time to maturity N =24 

days, dividend D=5, ex-dividend day TD =12, the upper daily-price limit β =10%, and 

the lower daily-price limit denoted by 𝛼. 
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Figure 8. A Comparison of Stock Density Function in Markets with Daily Price Limits to its BS Approximation 

 

Model parameter specifications: S0 =K =100, r =10%, σ =70%, daily-price limits γ =10%, and the Black-Scholes model denoted by BS. 
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Appendix 

Table A1. Options on Stocks with Two Discrete Dividends in Markets with Daily Price Limits 

 European Call European Put 

S0 HF Time MC Time Diff HF Time MC Time Diff 

90 0.04 242.46 0.03(0.001) 4.68 9.65% 30.00 248.57 30.02(0.004) 4.68 0.07% 

100 0.37 284.12 0.37(0.007) 4.99 1.22% 20.34 292.45 20.36(0.003) 4.99 0.13% 

110 1.92 331.12 1.92(0.014) 4.75 0.07% 11.88 342.08 11.91(0.009) 4.75 0.25% 

 American Call American Put 

S0 HFR Time LSMC Time Diff HFR Time LSMC Time Diff 

90 0.29 9984.21 0.29(0.0035) 281.11 1.04% 30.00 1846.08 30.03(0.006) 816.00 0.11% 

100 3.08 7691.37 3.08(0.0093) 352.22 0.18% 20.33 2194.96 20.36(0.005) 768.26 0.15% 

110 10.43 5502.17 10.40(0.0114) 359.98 0.25% 11.88 2545.16 11.90(0.004) 782.66 0.19% 

Model parameter specifications: r=1%, K=100, σ =70%, T=9 days, D1=10, D2=10, daily price limit 𝛾=10%, and computation time measured in 

seconds. HF denotes the proposed solution using the FFT in the framework of Haug et al. (2003). HFR denotes the proposed solution using the 

FFT and Richardson extrapolation in the framework of Haug et al. (2003). We set ξ =0.1702, �̂� =1.1, ∆𝑀 =1, and use 4096 points in the 

quadrature. The dividends D1 and D2 are assumed to be distributed at the time T=3 and T=6, respectively. MC denotes the Monte Carlo 

simulation, which has 100,000 paths and 100 time steps in one day. LSMC denotes the least square Monte Carlo simulation, which has 100,000 

paths and 100 time steps in one day. We use the absolute value of the difference between HF and MC divided by MC to calculate the Diff of 

European options. We use the absolute value of the difference between HFR and LSMC divided by LSMC to calculate the Diff of American 

options. Numbers in brackets denote the standard deviations of MC or LSMC. 

 


